Solution 10

Supplementary Problems

1. Let D be the parallelogram formed by the lines $x+y=1, x+y=3, y=2 x-3, y=2 x+2$. Evaluate the line integral

$$
\oint_{C} d x+3 x y d y
$$

where C is the boundary of D oriented in anticlockwise direction. Suggestion: Try Green's theorem and then apply change of variables formula.
Solution. By Green's theorem

$$
\oint_{C} d x+3 x y d y=\iint_{D} 3 y d A(x, y)
$$

Next, let $u=x+y$ and $v=y-2 x$. Then $(u, v) \mapsto(x, y)$ sends the rectangle $R=$ $[1,3] \times[-3,2]$ to D. We have $\frac{\partial(u, v)}{\partial(x, y)}=3$ and $x=(u-v) / 3$ and $y=(2 u+v) / 3$. By the change of variables formula

$$
\begin{aligned}
\iint_{D} 3 y d A(x, y) & =\iint_{R}(2 u+v) \frac{1}{3} d A(u, v) \\
& =\frac{1}{3} \int_{1}^{3} \int_{-3}^{2}(2 u+v) d v d u \\
& =\frac{1}{3} \int_{1}^{3}(10 u-5) d u \\
& =\frac{35}{3}
\end{aligned}
$$

2. Let $F=M \mathbf{i}+N \mathbf{j}$ be a smooth vector field in \mathbb{R}^{2} except at the origin. Suppose that $M_{y}=N_{x}$. Show that for any simple closed curve γ enclosing the origin and oriented in anticlockwise direction, one has

$$
\oint_{\gamma} M d x+N d y=\varepsilon \int_{0}^{2 \pi}[-M(\varepsilon \cos \theta, \varepsilon \sin \theta) \sin \theta+N(\varepsilon \cos \theta, \varepsilon \sin \theta) \cos \theta] d \theta
$$

for all sufficiently small ε. What happens when γ does not enclose the origin?
Solution. Let γ_{ε} be the circle entered at the origin with radius ε which is so small to be enclosed by γ. Then the vector field \mathbf{F} is smooth in the region bounded by γ and γ_{1}. Applying Green's theorem in a multi-connected region we have

$$
\oint_{\gamma} M d x+N d y=\oint_{\gamma^{\prime}} M d x+N d y
$$

Using the standard parametrization, $\theta \mapsto(\varepsilon \cos \theta, \varepsilon \sin \theta)$, we further have

$$
\oint_{\gamma^{\prime}} M d x+N d y=\varepsilon \int_{0}^{2 \pi}[-M(\varepsilon \cos \theta, \varepsilon \sin \theta) \sin \theta+N(\varepsilon \cos \theta, \varepsilon \sin \theta) \cos \theta] d \theta
$$

for all sufficiently small ε.
The line integral vanishes when γ does not include the origin.
3. (15 points) Let

$$
\mathbf{H}=\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j},
$$

which is defined in the plane except at the origin.
(a) Explain why \mathbf{H} is conservative in the upper half plane $\{(x, y): y>0\}$.
(b) Find a potential function for \mathbf{H} in the upper half plane.

Solution. (a) For the vector field \mathbf{H}, we have

$$
M_{y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=N_{x}
$$

hence the component test is fulfilled. Since the upper half plane is simply-connected, it implies that \mathbf{H} admits a potential function.
(b) As one can verify directly, a potential function is given by $\arctan \frac{y}{x}$.

Note. Indeed, the function $\arctan \frac{y}{x}$ is a potential function for \mathbf{H} in the region $\{(x, y)$: $(x, y) \neq(x, 0), x \leq 0\}$, that is, the plane minus the non-positive x-axis. This is a simply connected region.

